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Abstract

Review Article

IntroductIon

Urothelial carcinoma (UC) is the most common tumor type 
arising from the urinary tract.[1] The tumor can derive from the 
urothelium of the upper urinary tract (renal pelvis and ureter) 
or the urothelium of the lower urinary tract (urinary bladder 
and urethra). Previous studies have shown that the biological 
behavior and the gene expression profiles of UCs arising from 
both locations are highly similar.[2,3] This finding indicates 
that tumorigenesis of UC from anywhere in the urinary tract 
employs common pathways. In developed countries, the 
incidence of upper urinary tract UCs (UTUCs) is less frequent 

than that of urinary bladder UCs (UTUBs), and the ratio of 
the incidence of UC in the renal pelvis, ureter, and urinary 
bladder is approximately 3:1:51. However, the prevalence 
of UTUCs is high in certain populations such as those with 
Balkan endemic nephropathy, Chinese herb nephropathy, or 
phenacetin abuse.[2,4] In Taiwan, the ratio of the incidence of UC 
in the renal pelvis, ureter, and urinary bladder is approximately 
1:2.08:6.72. The higher incidence of UTUC in Taiwan may 
partly be explained by the presence of environmental pollution 
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and the increase in herbal consumption.[3] Currently, the 
carcinogenesis of UC is still poorly understood, despite the 
increasing number of studies identifying the prognostic value 
of biomarkers.

Histologically, UC was graded as low grade or high grade 
according to nuclear features, pleomorphism, mitosis, and 
cell arrangement. Low-grade UC (LGUC) is characterized by 
enlarged but monotonous nuclear features, loss of polarity, and 
rare mitosis [Figure 1]. These cases frequently show papillary 
configurations and rarely develop stromal invasion. In contrast, 
high-grade UC (HGUC) has moderate-to-marked nuclear 
pleomorphism, prominent nucleoli, and frequent mitosis. The 
papillary structure is frequently fused, and it tends to develop 
into an invasive tumor. Occasionally, carcinoma in situ (CIS) 
is associated with HGUC, which shows high-grade tumor cell 
pagetoid spreading along the surrounding urothelium.[5] In the 
urinary bladder, LGUC is frequently associated with activating 
point mutations in the gene that encodes fibroblast growth factor 
receptor 3 (FGFR3).[6] For UC of the urinary bladder (UBUC), 
tumors that invade the proper muscle layer have a worse 
outcome than those that do not and thus need more aggressive 
treatment. Currently, many classification systems have been 
published and are available for molecular subtyping of UBUC. 
Some of them focus mainly on either nonmuscle-invasive 
bladder cancer (NMIBC), such as the UROLMOL[7] system, 
or muscle-invasive bladder cancer (MIBC), such as the 
Cartes d’Identité des Tumeurs-Curie,[8] University of North 
Carolina,[9] MD Anderson Cancer Center,[10] and Cancer 

Genome Atlas (TCGA)[11] systems. Other systems, such as 
the LUND[12] and Baylor[13] systems, can be applied to both 
NMIBC and MIBC. Although the complexity and taxonomy 
are different between each system, there are similar clusters 
across the different systems. For example, in MIBC, a group of 
cancers rich in PPARG and estrogen receptor transcription can 
be identified across the systems. They share similar biomarkers 
with luminal subtypes of breast cancer and preserved 
uroplakins and KRT20.[10] FGFR3 mutations can be detected 
in more than half of this subgroup. Histologically, tumors 
carrying these two molecular changes usually show papillary 
configurations. In addition, patients with this subtype of MIBC, 
the luminal-papillary (LumP) type, have a relatively good 
outcome.[14,15] The UROLMOL system classified NMIBC into 
three subclasses. Class 1 consists mostly of low-grade tumors 
with mutations in early cell cycle genes. Class 2 NMIBC 
shares similar luminal cluster genes with Class 1 tumors but 
has mutations in late cell cycle genes and regularly progresses 
to MIBC over time in high-grade tumors. Class 3 tumors show 
basal-like gene expression.[7] The well-characterized molecular 
features not only provide information on UBUC behavior but 
also offer crucial guidance for their treatment.

Similar to those in UBUC, FGFR3 and TP53/MDM2 gene 
mutations are frequent genetic events in UTUC. Low-grade 
tumors regularly have activating FGFR3 mutations and 
lack TP53 mutations. However, the TP53 mutation is more 
prevalent in high-grade UBUC. One-third of high-grade 
UBUCs have FGFR3 mutations instead of TP53 alterations and 

Figure 1: A brief review of bladder carcinogenesis. The process starts with loss of heterozygosity of related chromosomes in the normal bladder 
epithelium and gives rise to flat atypia or papillary hyperplasia. Around 80% of the lesion developed into low‑grade papillary urothelial carcinoma after 
associated molecular aberrations occurred. A small portion (~15%) of these lesions developed into high‑grade papillary urothelial carcinoma after 
disruption of the tumor suppressor genes. On the other hand, 20% of cases may acquire the loss of function of the p53 and developed urothelial 
dysplasia. The lesions may progress into urothelial carcinoma in situ which frequently associated with loss of expression of RB protein. High‑grade 
papillary urothelial carcinoma and urothelial carcinoma in situ have a high propensity to develop into invasive urothelial carcinoma
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have a relatively promising clinical outcome.[16] UTUC also has 
a higher prevalence of HRAS mutations and a lower prevalence 
of RB1 and ERBB2 mutations.[17] Somatic microsatellite 
instability (MSI) has been reported in UTUC. A previous 
study showed that DNA mismatch repair (MMR) deficiency is 
observed in 7% of UTUC cases.[18] The transcriptome of UTUC 
is less characterized, in contrast to that of UBUC, probably due 
to the rarity of this tumor worldwide. The first comprehensive 
transcriptomic analysis of UTUC was conducted by Moss 
et al. and involved 31 untreated snap-frozen tumor samples. 
Four clusters of UTUC were identified: cluster 1 resembled 
the UBUC luminal subtype; cluster 2 resembled the UBUC 
basal subtype, had 100% FGFR3 mutations, and low bladder 
recurrence; cluster 3 had 100% FGFR3 and 71% PIK3CA 
mutations, no TP53 alterations, and high bladder recurrence; 
and cluster 4 had 50% TP53 mutations, frequent high-grade, 
advanced-stage disease, and shorter survival. UTUC of cluster 
3 and cluster 4 showed a trend of poorer overall survival.

Loss of heterozygosity is considered an early genetic event 
of UC development and can be found in premalignant lesions 
of UC, which are also known as low-grade intraurothelial 
neoplasia.[19] From here, the tumors progressed along 
one of the two different tracks of UC development. Most 
of them developed noninvasive papillary LGUC, which 
has a characteristic exophytic papillary configuration. 
Approximately 10%–20% of these LGUCs will transform into 
more aggressive HGUCs, which tend to invade the underlying 
stroma. A small portion of low-grade intraurothelial neoplasia 
progresses to high-grade intraurothelial neoplasia/CIS, which 
also frequently develops into invasive UC.[20,21] Recently, 
an analysis of high-throughput data revealed that UCs 
have complex genomic alterations and thus confer different 
biological behaviors.

The concept of hallmarks of cancer (HOCs) was introduced 
by Hanahan and Weinberg to provide a logical framework 
for understanding the remarkable diversity of neoplastic 
diseases.[22,23] The number of HOCs has been expanded and 
refined during the past two decades. To better illustrate the 
many facets of UCs, we will discuss the molecular biology 
behind the development of UCs from the perspective of the 
ten HOC.

SuStaIned ProlIferatIve SIgnalIng

Sustained proliferation of neoplastic cells is the fundamental 
feature of cancer. Increased mitogenic signaling is the key to 
maintaining the growth of cancer cells. Cancer can increase 
the signal through increased growth factor ligand production, 
elevating the growth receptor levels on cancer cells, altering 
the structure of the receptor, or modifying elements of the 
downstream cascade.[22,23] The past two molecular changes, 
considered growth factor-independent pathways, are important 
for the development of UC. Activating point mutations of 
the gene that encodes FGFR3, a tyrosine kinase receptor, are 
consistently observed in LGUCs. The persistent activation of 

FGFR3 activates the downstream mitogen-activated protein 
kinase and phosphoinositide 3-kinase (PI3K) pathways, 
which are important for the regulation of cell growth and 
proliferation.[24] HRAS is a member of the GTPase family and 
is a downstream element of the FGFR3 receptor. Mutation of 
the HRAS oncogene is another important genetic alteration 
in UCs and has a similar effect on downstream pathways as 
FGFR3. Their mutations are mutually exclusive.[25] Another 
frequent genetic alteration associated with LGUCs is mutations 
in the PIK3CA gene, which consistently activate the PI3K/
AKT/mTOR pathway.[26] Unlike HRAS alterations, PIK3CA is 
associated with concurrent FGFR3 mutations. LGUC harboring 
PIK3CA/STAG2 mutations has a higher propensity to develop 
into noninvasive HGUC.[27] This finding highlighted the critical 
role of the PI3K/AKT/mTOR pathway in the development of 
HGUC. These molecular alterations are considered important 
signals that promote urothelial hyperplasia to LGUC.[6]

evaSIon of growth SuPPreSSorS

To benefit from the sustained growth signals, tumor cells 
must bypass the sturdy cell cycle to proliferate. This process 
is tightly regulated by the products of tumor suppressor 
genes.[22,23] The TP53 and RB proteins play a central role in 
regulating the process. In HGUC, inactivation of TP53 and 
RB genes is key molecular features. Zhang et al. showed that 
transgenic mice harboring the SV40T transgene developed 
bladder tumors mimicking human urothelial CIS and 
invasive UCs.[21] TP53 regulates the cell cycle by activating 
the transcription of the CDKN1a gene to generate the p21 
protein. In HGUCs, TP53 is commonly affected by missense 
or loss-of-function mutations. Such mutations can be easily 
displayed using immunohistochemistry, as HGUC normally 
shows diffusely positive or negative staining results. Upon 
phosphorylation, RB releases E2F and promotes the expression 
of genes needed for the cell cycle to progress. Concurrent 
defects of these suppressor genes are important in promoting, 
but not initiating, UC invasiveness.[28] The CDKN2A mutation 
is also a frequent genetic event in UCs. Through different types 
of splicing, CDKN2A encodes the p14 and p16 proteins. The 
p14 protein inhibits the transcription of the MDM2 gene, which 
in turn prevents the degradation of TP53.[29] A previous study 
revealed that homozygous deletion of CDKN2A is frequently 
associated with FGFR3-mutated UCs and contributes to 
tumor aggressiveness and invasiveness.[30] The phosphatase 
and tensin homolog gene is another tumor suppressor gene 
that is also found to promote UC invasiveness.[31] We can 
conclude that Ras pathways are primarily involved in papillary 
tumor formation pathways, and genes associated with tumor 
suppression are more likely to confer increased aggressiveness.

reSIStance to cell death

Apoptosis is one of the defense mechanisms to prevent the body 
from developing cancer.[32-34] The increased cancer-promoting 
signaling and DNA damage associated with hyperproliferation 
are stresses that trigger apoptosis. Tumor cells usually develop 
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strategies to bypass apoptosis throughout the tumorigenic 
process.[22,23] The loss of TP53 function hinders the response 
of apoptosis to stress.[35] Previous results showed that the 
Fas receptor is located on the cell surface and activates the 
extrinsic apoptotic pathway when binding with FasL. Invasive 
UCs tend to decrease Fas expression on the surface to avoid 
apoptosis and may release soluble Fas to neutralize FasL. 
UCs with these alterations usually behave more aggressively 
clinically.[36,37] Other apoptosis-related markers, including 
caspase-3, BCL-2, and survivin, also have prognostic impacts 
on surviving patients.[38] Autophagy is a physiological process 
that enables cells to break down cellular organelles and recycle 
them for further biosynthesis and energy metabolism.[39,40] 
This process is kept in a basal state for normal cells and 
can be activated upon exposure to stress. Cancer cells can 
utilize this process to survive through stresses induced during 
treatment.[41] Autophagic activity is upregulated in UCs. The 
activity is AMPK/mTOR dependent and is associated with 
tumor progression. Inhibiting autophagy upon cell starvation 
activates intrinsic apoptotic pathways.[42-44] The crosstalk 
between autophagy and apoptosis can be an important target 
for the treatment of UCs.

PromotIon of rePlIcatIve ImmortalIty

Most normal cells go through a limited number of cell growth 
and division cycles that are tightly regulated by telomeres.[45,46] 
Telomeres are composed of multiple tandem repeats of short 
GT-rich sequences and protect the end of chromosomes from 
loss of genetic materials and formation of unstable chromosome 
structures. The telomeres become shorter as DNA replicates and 
eventually lose their capping function. The shortened telomere 
activates DNA damage responses and triggers cell cycle arrest, 
and the cells enter an irreversible nonproliferative but viable 
senescence state. Telomerase, composed of telomerase reverse 
transcriptase (TERT) and a telomerase RNA component, is a 
specialized DNA polymerase that adds telomere repeat segments 
to the ends of telomeric DNA to counteract the progressive 
loss of telomeres. In normal nongermline tissue, telomerase 
activity is suppressed through the repression of TERT gene 
transcription.[23,47] However, telomerase activity can be detected 
in almost all cancers, including UCs, reflecting the fundamental 
requirements for cancer cells to replicate repetitively. TERT 
promoter mutation is an early event in UC tumorigenesis and 
promotes the upregulation of telomerase activity in UCs.[48,49] 
TERT promoter mutations can be detected in 60%–80% of UCs 
and do not occur in benign urothelial proliferation; thus, they 
can be useful diagnostic tools for the detection of UCs.[48,50] 
In addition to telomere lengthening, telomerase and TERT 
participate in various biological processes, including cell 
survival, apoptosis, and DNA repair.[47]

InductIon of angIogeneSIS

Vascular networks are crucial to maintain the delivery of 
nutrients and oxygen and remove waste products in tumors.[22,23] 
During tumorigenesis, increased metabolic activity and energy 

consumption create a hypoxic state within the tumor and 
activate the “angiogenic switch.”[51] Hypoxia inducible factor 
1 (HIF-1) production is increased, resulting in the activation 
of vascular endothelial growth factor receptor-1 (VEGF1) and 
VEGFR-1 transcription.[52] In UC, HIF-1a is overexpressed 
and is correlated with a high proliferation index, increased 
VEGF expression, increased microvessel density, and poor 
survival.[53,54] VEGF-A plays a central role in angiogenesis. 
This molecule is overexpressed in UBCs and likely confers 
tumor aggressiveness.[55,56] Interestingly, the mRNA levels of 
VEGF and angiopoietins are significantly higher in low-grade 
and low-stage UC than in their high-grade and high-stage 
counterparts. VEGF immunostaining also revealed a lack 
of “hot spot” expression in HGUCs. This evidence suggests 
that VEGF activity is high during the early tumorigenesis of 
UCs and decreases as vascular remodeling is less pronounced 
during the late stage.[57]

actIvatIon of InvaSIon and metaStaSIS

The invasion and metastasis of cancer involve multistep 
processes.[22,23] Although many studies have disclosed 
regulatory molecules associated with tumor metastasis, the 
complex mechanism of invasion and metastasis is still unclear. 
Epithelial–mesenchymal transition is an important step in the 
beginning of this process. In UCs, loss of cell adhesion markers 
and an increase in mesenchymal markers are associated with 
invasive tumors and higher tumor grades.[58] E-cadherin 
is a cell–cell adhesion glycoprotein, and loss of function 
contributes to cancer progression, invasion, and metastasis. 
In UTUBs, loss of E-cadherin expression is associated with 
tumor recurrence and tumor progression.[59,60] Integrins are 
transmembrane receptors involved in cell-extracellular 
matrix (ECM) adhesion. The crosstalk between E-cadherin 
and integrin plays a role in tumor invasion and metastasis.[61] 
When ITGA5, encoded by integrin alpha 5, was knocked down, 
UCs showed increased E-cadherin expression, a downregulated 
“stemness” phenotype, and impeded tumor metastasis.[62] The 
“stemness” phenotype refers to the expression of stem cell 
markers that are normally observed in embryonic and adult 
stem cells. Tumor cells with this phenotype usually show 
self-renewal and multilineage differentiation potential and are 
thus cancer stem cells. UCs with “stemness” phenotypes have 
a higher propensity to metastasize.[63] Several stemness-related 
pathways have been shown to be involved in the UC metastatic 
process including the Hedgehog, Notch, Wnt/beta-catenin, 
and PI3k/Akt pathways.[64] The interaction between tumor 
cells and their surrounding microenvironment also determines 
their metastatic propensity.[65] This microniche is orchestrated 
by inflammatory cells, stromal cells, ECMs, and soluble 
components. Although many problems have been addressed, 
many questions still need to be answered.

genome InStabIlIty and mutatIon

The frequency of mutation in the genome is determined 
by the sensitivity to mutagenic agents and the integrity of 
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the genomic maintenance machinery. Disruption of the 
maintenance machinery causes widespread genome instability 
in human cancer. This phenomenon is instrumental for 
tumor progression, as evolving tumor cells can accumulate 
favorable genotypes for tumor survival.[23] Deficiencies in 
MMR systems can cause MSI, resulting in the accumulation 
of mutations in the short tandem repeats of DNA and tending 
to cause DNA mismatch errors. Inactivation of the MMR 
gene (MLH1, PMS2, MSH2, or MSH6) is either caused by an 
inherited mutation (Lynch syndrome) or sporadic events. MMR 
deficiency/MSI-high events are found in <1% of UCs of the 
urinary bladder but can occur in up to 20% of UCs of the upper 
urinary tract.[66,67] With advances in molecular techniques, the 
evaluation of tumor mutational status is currently possible. 
Tumors with a high tumor mutational burden (TMB) are 
associated with a good response to immune checkpoint 
inhibitor therapies.[68] This finding may be due to tumors with 
high TMB generating more neoantigens and thus readily 
being recognized by the immune system. UC has relatively 
high somatic mutation frequencies, along with lung cancer 
and melanoma.[69] The mutation frequency shows a pattern of 
TCW > T/C mutations (where “W” corresponds to either A 
or T, with C to T transitions or C to G transversions), which is 
consistent with the characteristic mutational signature caused 
by the “apolipoprotein B mRNA editing enzyme, catalytic 
polypeptide-like” (APOBEC) family of cytidine deaminases.[70] 
The APOBEC family has 11 members and is involved in C > U 
deamination in single-stranded DNA. TCGA and BGI datasets 
showed that UCs enriched with the APOBEC mutational 
signature (APOBEC-high) had better overall survival than 
those with low or no enrichment (APOBC-low). In addition, 
APOBEC-low UCs tend to be seen in LGUC and are associated 
with Asian ethnicity. Of all members of the APOBEC family, 
only APOBEC3A and APOBEC3B expression is associated 
with UC total mutational burden. APOBEC-high UCs tend to 
have mutations in DNA repair genes and chromatin regulatory 
genes such as TP53, NCOR1, KMT2C, KMT2A, ATR, BRCA2, 
and ARID1A. However, APOBEC-low UCs have a more 
frequent mutations in FGFR3 and HRAS.[71] It is likely that 
increased replicative stress and disruption of DNA repair genes 
can promote APOBEC mutagenesis.[72-74]

tumor‑PromotIng InflammatIon

The infiltration of inflammatory cells in cancer is considered 
a sign of the immune response to eradicate the tumor.[75] 
Later, it was found that this tumor-associated inflammation 
can exert a protumoral effect on cancer. Similar to wound 
healing, inflammatory cells release growth signals, 
proangiogenic factors, and ECM-modifying enzymes into 
the tumor microenvironment, facilitating tumor growth.[76-79] 
Tumor-associated macrophages (TAMs) have been widely 
studied in numerous cancers. Increased TAMs have been 
associated with poor outcome in some cancer types (breast, 
head and neck, melanoma, etc.) but not the others (colorectal 
and stomach).[80] There are two different phenotypes of 

macrophages: the antitumoral activated phenotype (M1) 
and the protumoral immunosuppressive phenotype (M2).[81] 
Increased M2-like CD163+ TAMs in UCs are associated 
with tumor recurrence and failure of Bacillus Calmette–
Guerin therapy.[82,83] In vitro studies showed that bladder 
tumor cells were able to secrete M2 polarizing cytokines and 
transformed macrophages.[84] Notably, interleukin (IL)-10 
can induce immunosuppressive macrophages and suppress 
activated T-cells. In addition, IL-10 induced the expression 
of programmed death ligand 1 (PD-L1) on macrophages.[85]

Based on solid evidence of a tumor-promoting role for TAMs, it 
is worth identifying treatment strategies for TAMs.[80] Multiple 
studies have evaluated the value of the neutrophil-lymphocyte 
ratio (NLR) in predicting survival or treatment outcome in UC. 
A systematic review revealed that a high NLR is correlated with 
worse overall recurrence-free and cancer-specific survival.[86] 
High tumor-associated neutrophils (TANs) can be seen in 
UCs and are associated with advanced tumor stage. Higher 
levels of IL-8 and transforming growth factor (TGF)-beta 
are released by UCs than by normal urothelium.[87,88] IL-8 is 
a potent chemoattractant for neutrophils, and its circulating 
level correlates with the NLR in UCs.[88,89] TGF-beta is 
responsible for transforming neutrophils into N2 phenotypes. 
N2 neutrophils release high levels of arginase and matrix 
metalloproteinase-9, which is known to confer tumor 
aggressiveness.[90] Based on solid evidence that the innate 
immune system influences downstream adaptive immunity, 
building a therapeutic strategy to manipulate intratumoral 
innate immunity is important.

reProgrammIng of energy metabolISm

To overcome deregulated cell proliferation, tumor cells will 
reprogram their energy metabolism for more efficient use 
of fuel and oxygen. Otto Heinrich Warburg demonstrated 
in 1924 that cancer cells are prone to glycolysis in glucose 
metabolism even with the support of adequate oxygen.[91-93] 
To overcome the less efficient ATP production, tumor cells 
upregulated glucose transport GLUT1 expression to facilitate 
the transport of glucose into the tumor cells. In urothelial 
neoplasms, GLUT-1 is mostly expressed in UCs but not in 
benign neoplasms. In addition, the upregulation of GLUT1 
positively correlated with tumor grading and staging.[94,95] 
The upregulation of glycolysis in UCs likely participates in 
the early phase of tumorigenesis. As the tumor progresses, 
pyruvate metabolism increases and eventually becomes the 
main source of energy for the tumor.[96] Lactate dehydrogenase 
isoform A plays a major role in maintaining glycolysis in tumor 
cells and converts glucose storage into lactate. The increase in 
lactate production in UC results in indirect modification of the 
tumor microenvironment and leads to tumor progression.[97] In 
addition to aerobic glycolysis, other metabolic pathways were 
also likely reprogrammed in UCs including the lipid metabolic 
pathway. Previous studies showed that fatty acid oxidation 
and fatty acid synthesis were upregulated in UCs.[97] Fatty 
acid synthase (FASN) is a single multienzyme complex that 
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catalyzes fatty acid synthesis. Previous studies have shown 
that FASN overexpression participates in UC tumorigenesis 
and triggers apoptosis when exposed to a FASN inhibitor; thus, 
FASN is a novel therapeutic target.[98,99] In addition, various 
metabolites have been identified in the urine or serum of 
patients and show correlations with tumor involvement and/
or grading.[97,100,101] These molecules can be useful biomarkers 
to identify a patient with UCs or for the detection of tumor 
recurrence.

evaSIon of Immune deStructIon

Our long-standing belief is that the human body is under 
constant immune surveillance and that incipient cancer cells 
are readily removed from the system.[23] Dendritic cells (DCs) 
mainly present antigens to T-cells and activate them. In UCs, 
there is an increased number of immature DCs expressing 
low HLA-DR, CD80, and CD86.[102] Immature DCs fail to 
activate T-cells and may shift T-cells toward a regulatory (Treg) 
phenotype.[103] Patients with UCs also have higher levels of 
Th2 cytokines (IL4, Il5, and IL10) and lower levels of Th1 
cytokines (IL2 and IFN-gamma) in their serum.[104] This 
evidence indicates that UCs evade immune destruction by 
shifting away from the cell-mediated response. CD8+ T-cells 
are important for immune-mediated tumor destruction and 
have been at the center of immune-oncology during the past 
decade. A previous study observed a favorable outcome in 
a subset of UCs with increased intratumoral CD8+ T-cells; 
these cells can be used as a predictive marker for treatment 
response when coupled with FoxP3+ Treg cells. Exhaustion 
and functional impairment of T-cells can be seen in many 
cancers. The dysfunctional CD8+ T-cells expressed high levels 
of inhibitory receptors including PD-1, TIM-3, and Lag-3. The 
overexpression of PD-L1 on TAMs and tumor cells induced 
CD8+ T-cell exhaustion when binding to PD-1, thus impairing 
the CD8+ T-cell antitumor response. The PD-1/PD-L1 axis is 
the major target of many checkpoint inhibitor anticancer drugs. 
Nevertheless, activated and functional CD8+ T-cells can also 
express high levels of PD-1, which may hamper the treatment 
effect of anti-PD-1.[105]

Limitations
Most of the experiments mentioned above were conducted 
using UBUCs. The debate of whether UBUCs and UTUCs 
share similar biological behavior and molecular alterations 
is beyond the scope of this paper. However, we would like to 
note that the frequency of the involved molecules or pathways 
can be different in these two tumors. For example, RB1 gene 
mutations are common in UBUCs (12.9%) but are not detected 
in UTUCs.[106] MSI-high is seen in <1% of UBUCs but is 
detected in up to 20% of UTUCs.[49] Thus, although UBUC and 
UTUC share many similarities, careful consideration should 
be given when applied to UTUC. More studies are warranted 
to understand the biology of UTUC.
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