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Abstract

Review Article

IntroductIon

Acute myeloid leukemia (AML) is a heterogeneous 
group of neoplastic diseases with great variability in 
the pathogenesis, clinical presentations, and treatment 
responses.[1] It is characterized by the uncontrolled 
proliferation of hematopoietic progenitors and the inability 
of cells to differentiate. Patients usually present with 
anemia, infection, and bleeding. About 60%–70% of 
patients can achieve complete remission (CR) after intensive 
chemotherapy (IC), but most relapse within 1 year, indicating 
that there is still minimal/measurable residual disease (MRD) 

after chemotherapy[2] even though the patients are in 
morphological CR.

Personalized treatment according to the AML pathogenesis 
and risk factors of individual patients is needed to improve 
the survival of AML patients while reducing the side 
effects from treatment. The risk factors include those that 
are related to the patient such as age and factors related to 
the disease such as white blood cell count, cytogenetics, 

Genetic alterations play important roles in the pathogenesis of acute myeloid leukemia (AML). With advances in genomics, many gene 
mutations have been detected in AML, and some specific mutations are included in international classifications and risk stratification. 
Gene mutations can be targets for the development of novel agents and biomarkers for monitoring measurable/minimal residual 
disease (MRD). Personalized medicine according to the genetic risk at presentation and MRD after treatment can not only improve 
survival but also reduce toxicity from therapies. This review focuses on the landscape of gene mutations and their clinical implications 
in patients with AML.
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and molecular gene mutations.[3-5] This review focuses 
on molecular gene mutations and their implications in 
personalized treatment.

Landscape of GenetIc aLteratIons In acute 
MyeLoId LeukeMIa

Recurrent cytogenetic abnormalities, such as t (15;17)/
PML ::RARA ,  t  (8;21)/RUNX1 ::RUNXT1 ,  inv (16)/
CBFB::MYH11, and del/t (11)(q23)/KMT2A fusion, have 
long been known to play important roles in the pathogenesis 
of AML and are closely associated with clinical outcomes.[3] 
With advances in genomic techniques, a variety of molecular 
mutations which cannot be detected by conventional 
chromosomal analysis have been found. Some of these 
mutations have been shown to contribute to the development 
and progression of AML and predict clinical outcomes.[4]

More than 90% of AML patients have molecular aberrations, 
including mutations in ASXL1, CEBPA, DNMT3A, EZH2, 
FLT3-internal tandem duplication (ITD), IDH1/IDH2, NPM1, 
PTPN11 RUNX1, WT1, TET2, TP53, RNA splicing factor 
genes (such as SF3B1, SRSF2, and U2AF1), cohesin complex 
genes (such as STAG1, STAG2, and RAD21), etc.[6-17] Table 1 
summarizes the common gene mutations in AML according 
to functional categories, and Figure 1 shows the distribution 
of gene mutations in newly diagnosed AML patients from 
the National Taiwan University Hospital (NTUH). The two 
most common mutations are FLT3-ITD and NPM1 mutation, 
followed by DNMT3A mutation. It is common to observe two 
or more mutations occurring in the same patient, consistent 
with the two-hit theory. Some mutations frequently co-occur, 
such as NPM1 mutation, FLT3-ITD, and DNMT3A mutation, 
indicating their concert interaction in the pathogenesis of 
AML. Conversely, others such as IDH and TET2 mutations 

Table 1: Common genetic alterations in acute myeloid leukemia according to functional categories

Functional category Gene members Role in AML leukemogenesis
Myeloid transcription 
factors

Transcription factor fusions by 
chromosomal rearrangements, such as 
t(8;21)(q22;q22)/RUNX1::RUNX1T1 
and inv(16)(p13.1q22) or t(16;16)
(p13.1;q22)/CBFB::MYH11
GATA2, RUNX1, and CEBPA

Transcriptional deregulation and impaired hematopoietic differentiation

NPM1 NPM1 Aberrant cytoplasmic localization of NPM1 and its interacting proteins
Tumor suppressors TP53, WT1, PHF6 Transcriptional deregulation and impaired degradation via the negative regulator 

(MDM2 and PTEN oncogenes)
Signaling pathways FLT3, KIT, PTPN11, RAS Proliferative advantage through the RAS-RAF, JAK-STAT, and PI3K-AKT signaling 

pathways
DNA methylation DNMT3A, TET2, IDH1, IDH2 Deregulation of DNA methylation and oncometabolite production
Chromatin modifier ASXL1, EZH2 and KMT2A Deregulation of chromatin modification and impairment of methyltransferase 

function
Cohesin complex STAG1, STAG2, RAD21, SMC1A, 

SMC3
Impairment of accurate chromosome segregation and transcriptional regulation

Splicing factors SRSF2, SF3B1, U2AF1, ZRSR2 Deregulated RNA processing and aberrant splicing patterns
NPM1: Nucleophosmin, AML: Acute myeloid leukemia

Figure 1: Common molecular gene mutations and their incidence rates (from the acute myeloid leukemia cohort at National Taiwan University Hospital, 
n = 763). ITD: Internal tandem duplication
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are mutually exclusive, indicating their redundant action in 
AML cells.

IncorporatIon of MoLecuLar Gene MutatIons Into 
the cLassIfIcatIon of acute MyeLoId LeukeMIa

In the 2001 World Health Organization (WHO) classification 
of myeloid neoplasms, only cytogenetic abnormalities were 
included as recurrent genetic abnormalities in AML.[18] 
With molecular mutations detected in the following years, 
the 2008 WHO classification first included AML with two 
molecular mutations, NPM1 mutation and biallelic CEBPA 
mutation, respectively, as provisional entities.[19] The list 
of AML entities with molecular mutations increased in 
the 2016 WHO classification[20] and expanded further in 
the latest 2022 WHO classification[21] [Table 2]. There are 
some differences between the 2022 International Consensus 
Classification (ICC) of myeloid neoplasms and the 2022 
WHO classification[22] [Table 3]. The major difference is 
the reclassification of myelodysplastic syndrome (MDS) 

with 10%–19% blasts in the blood or bone marrow to MDS/
AML. The purpose of this change is to allow MDS/AML 
patients to be eligible for both MDS and AML trials to 
optimize their management. AML with specific recurrent 
gene fusions or NPM1 mutation shows distinct clinical and 
biological characteristics irrespective of blast counts in the 
bone marrow or peripheral blood (BM or PB), so the cutoff 
level of blast count for the diagnosis of AML was reduced 
from ≥20% in the 2016 WHO classification to ≥10% in the 
2022 ICC [Table 3], and there is no lower limit in the 2022 
WHO classification [Table 2] in these AML categories, with 
the exception of AML with BCR::ABL fusion in which a 
blast cutoff of 20% is required to avoid overlap with chronic 
myeloid leukemia [Tables 2 and 3]. The same blast cutoff 
of 10% is applied for AML with CEBPA mutation in the 
ICC classification; however, the cutoff is 20% in the WHO 
classification, because the WHO panelists considered that there 
are insufficient data to support any change in the blast cutoff 
criterion for AML with CEBPA mutation.

rIsk cLassIfIcatIon Based on Gene MutatIons

There are close associations of specific molecular mutations 
with the clinical and biological features of AML. For example, 

Table 2: The 2022 World Health Organization 
Classification
AML with defining genetic abnormalities

APL with PML::RARA fusion*
AML with RUNX1::RUNX1T1 fusion*
AML with CBFB::MYH11 fusion*
AML with DEK::NUP214 fusion*
AML with RBM15::MRTFA fusion*
AML with BCR::ABL1 fusion
AML with KMT2A rearrangement*
AML with MECOM rearrangement*
AML with NUP98 rearrangement*
AML with NPM1 mutation*
AML with CEBPA mutation
AML, myelodysplasia-related**
AML with other defined genetic alterations

AML, defined by differentiation
AML with minimal differentiation
AML without maturation
AML with maturation
Acute basophilic leukemia
Acute myelomonocytic leukemia
Acute monocytic leukemia
Acute erythroid leukemia
Acute megakaryoblastic leukemia

*Blasts <20% in the marrow or PB is acceptable for the diagnosis of 
AML with defining genetic abnormalities except AML with BCR::ABL1 
fusion and AML with CEBPA mutation, **Defining cytogenetic 
abnormalities: Complex karyotype (≥3 abnormalities); 5q deletion or 
loss of 5q due to unbalanced translocation; Monosomy 7, 7q deletion, 
or loss of 7q due to unbalanced translocation; 11q deletion; 12p deletion 
or loss of 12p due to unbalanced translocation; Monosomy 13 or 13q 
deletion; 17p deletion or loss of 17p due to unbalanced translocation; 
Isochromosome 17q; idic(X)(q13). Defining somatic mutations: ASXL1, 
BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1, or ZRSR2. 
Khoury et al., 2022.[21] AML: Acute myeloid leukemia, APL: Acute 
myeloid leukemia

Table 3: The 2022 International Consensus Classification
APL with t(15;17)(q24.1;q21.2)/PML::RARA ≥10%*
APL with other RARA rearrangements ≥10%*
AML with t(8;21)(q22;q22.1)/RUNX1::RUNX1T1 ≥10%*
AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22)/CBFB::MYH11 
≥10%*
AML with t(9;11)(p21.3;q23.3)/MLLT3::KMT2A ≥10%*
AML with other KMT2A rearrangements ≥10%*
AML with t(6;9)(p22.3;q34.1)/DEK::NUP214 ≥10%*
AML with inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2)/
GATA2;MECOM(EVI1) ≥10%*
AML with other MECOM rearrangements ≥10%*
AML with other rare recurring translocations ≥10%*
AML with t(9;22)(q34.1;q11.2)/BCR::ABL1
AML with mutated NPM1 ≥10%*
AML with in-frame bZIP CEBPA mutations ≥10%*
AML and MDS/AML with mutated TP53
AML and MDS/AML with myelodysplasia-related gene mutations**
AML with myelodysplasia-related cytogenetic abnormalities#

AML and MDS/AML NOS
Myeloid sarcoma
*The diagnosis of AML with these recurrent genetic alterations can 
be made when blasts (or so-called “blast equivalents” including 
promonocytes and neoplastic promyelocytes) account for 10% or more 
in the blood or marrow, **Defined by mutations in ASXL1, BCOR, 
EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1, or ZRSR2, #Defined 
by detecting a complex karyotype (≥3 unrelated clonal chromosomal 
abnormalities in the absence of other class defining recurring genetic 
abnormalities), del(5q)/t(5q)/add(5q), -7/del(7q), 18, del(12p)/t(12p)/
add(12p), i(17q), -17/add(17p) or del(17p), del(20q), and/or idic(X)(q13) 
clonal abnormalities. Arber et al., 2022.[22] APL: Acute promyelocytic 
leukemia, AML: Acute myeloid leukemia, NPM1: Nucleophosmin, MDS: 
Myelodysplastic syndrome, NOS: Not otherwise specified, bZIP: Basic 
leucine zipper
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CEBPA in-frame basic leucine zipper domain mutations and 
NPM1 mutation in the absence of FLT3-ITD predict longer 
survival; in contrast, ASXL1, BCOR, EZH2, RUNX1, SF3B1, 
SRSF2, STAG2, U2AF1, ZRSR2 mutations (all belonging to 
myelodysplasia-related gene mutations), and TP53 mutations 
predict poorer outcomes.[7,23] After the publication of the 2022 
WHO and ICC classifications, European LeukemiaNet (ELN) 
updated the prior 2017[24] ELN recommendations for the 
diagnosis and management of AML in 2022.[25] In the 
recommendations, AML is risk stratified according to 
cytogenetic abnormalities and gene mutations into three 
categories: favorable, intermediate, and adverse [Table 4]. 
Patients with different risks have distinct clinical outcomes. 
Figure 2 shows overall survival curves stratified by the 2022 
ELN risk classification of 809 AML patients from NTUH.[26]

Gene MutatIons as tarGets for the deveLopMent 
of noveL aGents

Gene mutations can be targets for novel therapies, and 
several agents targeted to specific genetic alterations have 
been developed.[27-35] Some are available in Taiwan, including 

the FLT3 inhibitors midostaurin and gilteritinib[28,29] for 
FLT3-mutated AML, while some others have been approved 
by the US Food and Drug Administration (FDA) but not 
yet by the Taiwan FDA, such as the IDH1/IDH2 inhibitors, 
ivosidenib and enasidenib, respectively, for IDH-mutated 
AML.[33,35] In November 2024, the US FDA approved the first 
menin inhibitor, revumenib, for relapsed or refractory acute 
leukemia with KMT2A translocation (https://www.fda.gov/
drugs/resources-information-approved-drugs/fda-approves-
revumenib-relapsed-or-refractory-acute-leukemia-kmt2a-
translocation). More novel agents are under clinical trials, 
including other menin inhibitors for KMT2A-rearranged or 
NPM1-mutated AML, eprenetapopt, a reactivator of p53, 
for TP53-mutated AML,[30] and H3B-8800, an orally active 
modulator of SF3B1 splicing complex, for spliceosome-mutant 
cancers.[36]

Gene MutatIons as BIoMarkers for MonItorInG 
MeasuraBLe/MInIMaL resIduaL dIsease

Most AML patients can achieve cytomorphological CR; 
however, approximately 50% eventually relapse, indicating the 
presence of MRD that escapes the detection of conventional 
morphological examinations. Mounting evidence has shown 
that a persistently high level of MRD or a rising level after an 
initial response invariably predicts relapse.

Traditionally, MRD is detected by multicolor flow cytometry, 
which recognizes leukemia-associated or a different from 
normal aberrant immunophenotype as a leukemia-specific 
marker.[37] Quantifying MRD by reverse quantitative 
polymerase chain reaction is based on AML-specific 
fusion genes such as PML::RARA, RUNX1::RUNXT1, and 
CBFB::MYH11 or gene mutations such as NPM1 mutation. 
Next-generation sequencing is a more powerful technique 
which can simultaneously detect various mutations and be 
applied to most AML patients.[38]

Table 4: 2022 European LeukemiaNet risk classification 
by genetics

Risk category Genetic abnormality
Favorable t(8;21)(q22;q22.1)/RUNX1::RUNX1T1

inv(16)(p13.1q22) or t(16;16)(p13.1;q22)/
CBFB::MYH11
Mutated NPM1 without FLT3-ITD
bZIP in-frame mutated CEBPA

Intermediate Mutated NPM1 with FLT3-ITD
Wild-type NPM1 with FLT3-ITD
t(9;11)(p21.3;q23.3)/MLLT3::KMT2A
Cytogenetic and/or molecular abnormalities 
not classified as favorable or adverse

Adverse t(6;9)(p23;q34.1)/DEK::NUP214
t(v;11q23.3)/KMT2A-rearranged
t(9;22)(q34.1;q11.2)/BCR::ABL1
t(8;16)(p11;p13)/KAT6A::CREBBP
inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2)/
GATA2,MECOM(EVI1)
t(3q26.2;v)/MECOM(EVI1)-rearranged*
-5 or del(5q); -7; -17/abn(17p)
Complex karyotype, monosomal karyotype#

Mutated ASXL1, BCOR, EZH2, RUNX1, 
SF3B1, SRSF2, STAG2, U2AF1, or ZRSR2
Mutated TP53

*t(3q26.2;v)/MECOM(EVI1)-rearranged: 3q26.2 fusions 
with partners than GATA2, such as t(3;8)(q26.2;q24.2)/
MYC::MECOM; t(3;12)(q26.2;p13.2)/ETV6::MECOM; t(3;21)
(q26.2;q22.1)/MECOM::RUNX1MYC, etc., are also associated with 
poor prognosis, #Monosomal karyotype: Presence of two or more 
distinct monosomies (excluding loss of X or Y), or one single autosomal 
monosomy in combination with at least one structural chromosome 
abnormality (excluding core-binding factor AML). Döhner et al., 2022.
[25] AML: Acute myeloid leukemia, NPM1: Nucleophosmin, ITD: Internal 
tandem duplication, bZIP: Basic leucine zipper

Figure 2: Overall survival of acute myeloid leukemia (AML) patients 
stratified by the European LeukemiaNet 2022 risk classification (from 
the AML cohort at National Taiwan University Hospital, n = 809).[26] OS: 
Overall survival

https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-revumenib-relapsed-or-refractory-acute-leukemia-kmt2a-translocation
https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-revumenib-relapsed-or-refractory-acute-leukemia-kmt2a-translocation
https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-revumenib-relapsed-or-refractory-acute-leukemia-kmt2a-translocation
https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-revumenib-relapsed-or-refractory-acute-leukemia-kmt2a-translocation
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IMpLIcatIons of Gene MutatIons on personaLIzed 
treatMent

Identifying the prognostic factors for patients with AML is 
the first step of personalized medicine. Conventionally, AML 
patients are categorized into favorable-, intermediate-, and 
unfavorable-cytogenetic risk groups according to cytogenetic 
changes [Figure 3]. However, patients with intermediate-risk 
cytogenetics represent a largely heterogeneous population 
regarding treatment response and clinical outcome. Integrating 
gene mutations with cytogenetic abnormalities can better 
stratify AML patients into different risk groups as recommended 
by the ELN.[25] Patients with favorable-risk AML can be 

treated with consolidation chemotherapy after achieving 
CR with no need to proceed to allogeneic hematopoietic 
transplantation (allo-HSCT). However, the treatment strategy 
should be changed if MRD is detected during follow-up, 
even if the patient has good-risk genetic aberrations. On 
the other side, patients with adverse-risk AML can benefit 
from IC followed by allo-HSCT. For example, AML patients 
with RUNX1 mutation have poorer outcomes than those 
without the mutation; however, we previously showed that 
RUNX1-mutated patients had similar survival to RUNX1-wild 
patients if receiving allo-HSCT.[40] Similarly, allo-HSCT has 
been shown to ameliorate the poor prognosis of AML patients 
with myelodysplasia-related mutations.[23]

MRD after treatment is an important biomarker to monitor 
treatment response, detect early relapse, and predict the 
prognosis in AML patients. We previously showed that 
MRD positivity detected by NGS at first morphological CR 
after induction chemotherapy [Figure 4, left] as well as first 
consolidation chemotherapy [Figure 4, right] predicts poorer 
outcomes in AML patients,[38] especially at the latter time 
point. The poor prognosis of patients with NGS MRD after 
consolidation chemotherapy can be mitigated by allo-HSCT. 
Preemptive treatment with azacitidine[41] or venetoclax, an oral 
BCL-2 inhibitor,-based treatment[42] when MRD is detected is 
effective to reduce or eliminate MRD.

The use of novel agents targeting specific gene mutations 
is expected to improve the treatment response and clinical 
outcomes of AML patients.[43] FLT3-mutated AML patients 
have been shown to have longer survival if receiving 
frontline IC plus the FLT3 inhibitor midostaurin, compared 
to IC alone.[28] Furthermore, the addition of ivosidenib, an 
IDH1 inhibitor, to the hypomethylation agent azacitidine has 
been shown to improve overall survival in newly diagnosed 
IDH1-mutated AML patients who are illegible for IC compared 

Figure 3: Overall survival of acute myeloid leukemia patients from National 
Taiwan University Hospital stratified by cytogenetic risk. Favorable‑risk 
cytogenetics: t (8;21), inv (16), t (15;17); unfavorable‑risk cytogenetics: 
Complex, ‑5/5q‑, ‑7/7q‑, 3q‑, t (9;22)/(Ph); intermediate‑risk cytogenetics: 
Normal karyotype or all other abnormalities[39]

Figure 4: Overall survival curves stratified by the status of measurable/minimal residual disease (MRD) detected by next‑generation sequencing at the 
time of morphological complete remission after induction chemotherapy (left) and first consolidation chemotherapy (right). MRD positivity predicts 
poorer overall survival, especially after first consolidation chemotherapy.[38] OS: Overall survival
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to treatment with azacitidine alone.[44] Issa et al. reported that 
treatment with the menin inhibitor revumenib in patients with 
heavily pretreated relapsed/refractory acute leukemia with 
KMT2A translocation resulted in a rate of CR or CR with 
partial hematologic recovery of 22.8%.[34] To achieve the 
goal of precision medicine, the development of more novel 
mutation-targeted agents is needed.

concLusIon

Genetic alterations are useful biomarkers to risk-stratify AML 
and guide treatment choice. They can also be targets for the 
development of novel agents and markers to monitor MRD. 
According to the 2022 ELN recommendation, in addition to 
searching for specific cytogenetic abnormalities/fusion genes 
such as RUNX::RUNX1T1, CBFB::MYH11, and KMT2A gene 
fusions, it is mandatory to screen for gene mutations that are 
important for AML classification and risk stratification, such 
as NPM1, CEBPA, TP53, ASXL1, RUNX1, BCOR, EZH2, 
SF3B1, SRSF2, STAG2, U2AF1, and ZRSR2 mutations, and 
those that are druggable, such as FLT3 and IDH1/2 mutations. 
Personalized medicine based on the risk at diagnosis, MRD 
after treatment, and proper use of mutation-targeted novel 
agents can improve the survival of AML patients while 
reducing the toxicity from the treatment.
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