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a b s t r a c t

Arylamine N-acetyltransferase (NAT) is a phase II metabolizing enzyme, which belongs to the transferase
family; specifically those acyltransferases which transfer various groups except aminoacyl. NATs are
found in both prokaryotes and eukaryotes. They generally perform detoxification reactions; however
they sometimes participate in the bioconversion of heterocyclic arylamines into electrophilic nitrenium
ions, which are directly implicated in the process of tumor initiation. Several human metabolic enzymes
are genetically polymorphic. Polymorphism in the NAT1 and NAT2 genes occurs through single nucleo-
tide polymorphisms in a single exon coding region. The NAT enzymes add an acetyl group from the O to
the N group of arylacetohydroxates, which causes the activation of arylamine carcinogens and the
subsequent production of N-acetoxy-esters. Additional studies are required to determine the specific role
of N- and O-acetylation in carcinogenesis, as at present there is limited literature available and no as-
sociation has been reported between NAT genotype polymorphisms and cancer development within
Asian populations.
© 2018 Taiwan Oncology Society. Publishing services by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Background

The arylamine N-acetyltransferase (NAT) enzyme is a phase II
metabolizing enzyme with a functional role in conjugation re-
actions associated with drug metabolism. NATs generally perform
detoxification reactions, however they can be carcinogenic by
acting as a carrier for toxic compounds.1 Several human metabolic
enzymes are genetically polymorphic. These polymorphisms affect
the activities of the enzymes, and have been previously studied
worldwide to determine any associations with the development of
various carcinomas.2

The systematic name of the NAT enzyme is “acetyl-CoA: aryl-
amine N-acetyltransferase” and it belongs to the transferase family,
specifically those acyltransferases which transfer groups other than
aminoacyl. NATs are found in both prokaryotes and eukaryotes,
where they transfer an acetyl group from acetyl coenzyme A to
various arylamine and hydrazine xenobiotics. Humans encode two
functional NAT genes (NAT1 and NAT2) and one pseudogene.3 The
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NAT enzymes add an acetyl group from the O to the N group of
arylacetohydroxates, which results in the activation of arylamine
carcinogens and the subsequent production of N-acetoxyesters.
Polymorphisms in the NAT1 and NAT2 genes occur through single
nucleotide polymorphisms (SNPs) in a single exon coding region.
These polymorphic proteins are degraded following ubiquitation in
proteasomes.4 The genes for each of the isoenzymes are located at
chromosome 8 (NAT1, 8p21.3e22; NAT2, near the centromere of
chromosome 8 - usually 177 kb) with 87% nucleotide identity and
81% homology in translation.5,6

The association of N-acetylation activity with different types of
cancer has been determined in different populations and ethnic
groups. The N-acetylation activity of NAT is classified into slow,
intermediate and rapid phenotypes based on the polymorphism of
their genotype. The frequency of slow and fast NAT phenotypes
varies markedly among different ethnic groups. An individual’s
phenotype influences their sensitivity to different toxins and
carcinogenic arylamines, and the incidence rate of particular mu-
tations within the NAT loci largely depends on an individual’s
ethnic and racial origin.7 Individual variations may be due to the
different frequencies of polymorphism in the slow acetylator
phenotype, which are observed in different populations. Asian
populations only have 10e30% slow acetylators, whereas the inci-
dence of slow acetylator phenotypes ranges from 40 to 70% in
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Caucasians.8,9 These ethnic differences are due to the frequency
distribution of the NAT genotype, and its potential association with
cancer emphasizes the need to study its relationship with major
types of cancer in Asian populations.

2. Association of genetic polymorphism with cancer
susceptibility

At present, 28 NAT1 and 88 NAT2 alleles have been identified,
among them NAT1*4 and NAT2*4 are considered as wild type al-
leles.10 Allelic variants of NAT determine whether an individual has
a slow, intermediate or rapid phenotype.

The two NAT isoenzymes have different tissue specificity. The
NAT1 enzyme is typically expressed in the majority of tissues with
major activity in the extrahepatic tissues, whereas NAT2 activity is
primarily confined to the liver and gastrointestinal tract.11 NAT
metabolic activity changes in individuals with an SNP in the NAT
gene, as this causes allelic differences to their genotype and results
in the expression of a different phenotype. The ‘slow acetylator’ is
considered as expressed if the subject is homozygous for NAT
polymorphisms. Individuals heterozygous for NAT polymorphisms
are said to have the intermediate acetylator phenotype, and in-
dividuals who lack NAT2 polymorphisms have the rapid acetylator
phenotype. The genotype polymorphism of some NAT alleles and
their corresponding phenotypes are defined in Table 1.9

The N- or O-acetylation activity of NAT determines which
phenotype is at the highest risk of developing certain types of
cancer. For instance, the NAT2 slow acetylator phenotype is at
higher risk when N-acetylation is a detoxification step, as in aro-
matic amine associated urinary bladder cancer. Whereas, the NAT2
rapid acetylator phenotype is at highest risk for cancers inwhich O-
acetylation is an activation step, such as heterocyclic amine-related
colon cancer.12 Each of the enzymes has a preferred substrate; NAT1
has increased catalytic activity with 2-Aminofluorene, p-Amino-
benzoic acid, p-Aminosalicylic acid, Sulfamethoxazole, and Sulfa-
nilamide. Whereas, NAT2’s preferred substrates include
Aminoglutethimide, 2-Aminofluorene, Hydralazine and Procaina-
mide. Whether activation or deactivation occurs depends on the
nature of the substrate and its kinetic properties; however the
tissue expression of NAT is also an important factor in determining
cancer risk at specific sites.13

The acetylation genotype influences the acetylation of several
carcinogens, thus demonstrating its association with several types
of cancer. However, the racial and ethnic origin of individuals, as
well as environmental factors are also involved in cancer
predisposition.14

2.1. Urinary bladder cancer

Genetic predisposition, environmental factors, occupational
exposure and cigarette smoking are the major risk factors for
bladder cancer. Aromatic and heterocyclic amines are carcinogenic
Table 1
The NAT1 and NAT2 genotype corresponding to their phenotypes.

Normal phenotype Slow phenotype

NAT1 alleles NAT2 alleles NAT1 alleles NAT2 alleles

NAT1*4 NAT2*4 NAT1*14 NAT2*5
NAT1*3 NAT1*15 NAT2*6
NAT1*5 NAT1*16 NAT2*7
NAT1*11 NAT1*17 NAT2*14

NAT1*19 NAT2*17
NAT1*22 NAT2*19
compounds, which increase an individual’s risk of bladder cancer.
These compounds are metabolized by several enzymes, including
NAT. The genetic polymorphism of NAT1 affects its detoxification
activity against carcinogens.15 NAT2 exhibits dual functionality as it
can activate carcinogens and detoxify toxic compounds. Arylamines
and other bladder carcinogens can undergo a detoxification reac-
tion, either through N-acetylation by the liver NAT2 enzyme or
through oxidation by the cytochrome P450 enzyme (CYP1A2T). The
derivatives of these reactions are catalyzed by phase II metabolic
enzymes, such as glutathione S-transferases and UDP-
glucuronosyltransferases, and form stable metabolites which are
eventually excreted from the body in the urine. Alternatively, the
NAT2 enzyme activates the procarcinogens via an O-acetylation
reaction. Initially, the metabolically active N-hydroxy compounds
of procarcinogens are formed by hepatic CYP1A2T. Following their
transportation into the lumen of the bladder, these compounds are
O-acetylated by NAT2, which generates reactive oxygen species and
causes DNA damage (Fig. 1).16 Slow NAT2 acetylators are at an
increased risk for developing cancer in which N-acetylation is
involved in detoxification, such as urinary bladder cancer.17

A meta-analysis performed on one ethnic group within the
Chinese population, revealed that the NAT2 slow acetylation
phenotype was associated with an increased risk of bladder carci-
noma in mainland China.18 The results of a similar meta-analysis,
which included different populations also reported a strong cor-
relation between the NAT2 slow acetylation phenotype and an
increased risk of bladder cancer in Asian and non-Asian pop-
ulations.19 The findings of other previous studies from Bangladesh,
Japan and China are consistent with these results suggesting that
there is a statistically significant positive correlation between the
NAT2 slow acetylation phenotype and a higher risk of bladder
carcinoma.20e22 However, there have been conflicting; several
recent studies (experimental and meta-analysis) reported no cor-
relation between the NAT1 or NAT2 genotype and bladder
cancer.12,23,24
2.2. Colorectal carcinoma (CRC)

The incidence rate of CRC is increasing among Asians and the
highest prevalence rate is observed in the Chinese population.
There has also been a reported increase in the prevalence of CRC in
Japan, Taiwan, South Korea, Iran and Singapore over the past few
decades.25,26 Dietary heterocyclic amines, polycyclic aromatic hy-
drocarbons and the endogenous formation of N-nitroso com-
pounds are all potential carcinogens of CRC.27,28 Previous genotypic
and phenotypic studies have cited several risk factors for CRCs,
which include the genetic susceptibility of individuals, and certain
environmental factors, such as the consumption of alcohol, fat and
red meat. Red meat consumption is specifically associated with
CRCs due to the release of fecopentanes, and heterocyclic
amines.29,30 NATs play a critical role in the metabolic activation of
these carcinogens and present them for O-acetylation reactions to
Unknown phenotype Rapid phenotype

NAT1 alleles NAT2 alleles NAT1 alleles NAT2 alleles

NAT1*18 NAT2*10 NAT1*10 NAT2*12
NAT1*20 NAT2*11 NAT1*21 NAT2*13
NAT1*23 NAT2*18 NAT1*24
NAT1*26 NAT1*25
NAT1*27
NAT1*28
NAT1*29



Fig. 1. The role of NAT2 enzyme in N- and O-acetylation. Arylamines from environmental sources can be N-acetylated by hepatic NAT2 function, or possibly oxidized by CYP1A2 in
endoplasmic reticulum. The derivatives can form more stable metabolites and eventually excreted through urine. Alternatively, arylamines could be procarcinogens and form
metabolically active N-hydroxy- compounds which are transported through circulation to the bladder lumen. These active N-hydroxy compounds can be O-acetylated by local NAT2
to generate ROS which cause the DNA damage and resulted mutations lead to cancerous process.
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form N-acetoxyaryl amines. These derivatives may cause DNA
damage by direct binding with the DNA. Individuals with a rapid
NAT acetylator type have an increased risk of developing CR due to
increased activation of these carcinogens.31e33 In CRC and other
cancers where O-acetylation is the activation step, individuals with
the rapid NAT2 acetylator type are at highest risk of disease onset.11

Asian populations are primarily composed of individuals with the
rapid acetylor phenotype for the NAT2 enzyme.8,34,35

A large sample size meta-analysis performed on a Japanese
population and African Americans (a population with a high risk of
CRC) suggested an association between NAT2 phenotype and CRC.
The risk of cancer was highest in Japanese individuals with the
rapid NAT2 acetylator phenotype. A linear association was also
found between the consumption of processed red meat and an
increased risk of colorectal cancer.36 Another study in Japan has
reported no association between the NAT1*10 or NAT2 rapid ace-
tylator genotypes with colorectal or gastric carcinoma. However,
NAT1*10 was found to be associated with smoking induced gastric
carcinoma.37 A controlled study in Chinese individuals supported
the findings that there is no significant correlation between the
slow or rapid NAT acetylator phenotypes with the development of
CRC. Among the ten genotypes of NAT2 identified within patients,
one genotype (WT/M2) was observed more frequently and showed
an association with CRC.38 Conversely, the results of a controlled
study conducted in Taiwan revealed an association between CRC
and the rapid NAT2 phenotype, particularly in females. The results
indicated a greater risk of disease onset in individuals with ho-
mozygous NAT2 acetylator genotype compared with individuals
with the slow NAT2 genotype. Heterozygous genotypes showed no
association with CRC.39

2.3. Prostate cancer

The well-known predisposing factors for prostate cancer are old
age, family history, smoking and a western diet. In Asian Pacific
Islanders the incidence rate of prostate cancer is 79.3 per 100,000
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people.40 According to 2008 data, 14% of all cases of worldwide
prostate cancer were within the Asia-Pacific region and the ma-
jority of those cases were diagnosed in Japan, China and Australia.35

Prostate cancer is extremely prevalent in Pakistan, where it is the
third most common cancer in males. Incidence rates vary among
different countries due to variations in genetic factors, diagnosis,
treatment and lifestyle.41 As epithelial cells of the prostate express
NAT, they can activate heterocyclic amines, which have carcino-
genic potential and are therefore associated with an increased risk
of cancer.42

Hamasaki et al.43 reported on the incidence of NAT2 poly-
morphism in Japanesemen and its associationwith prostate cancer.
They found a high frequency of the NAT2 acetylator type in patients
with prostate cancer, and its expression was significantly increased
in high-grade tumors. However, smoking was revealed to have a
greater influence on the risk of prostate cancer.33 A pilot study
conducted in India by Srivastava and Mittal,44 found a significant
association between the NAT2 rapid acetylator genotype and
prostate cancer (C-aP) in tobacco users (OR¼ 3.43; 95% CI,
1.68e7.02; P< 0.001) compared with the controls.

2.4. Breast cancer

According to GLOBOCAN 2012 data, the highest prevalence rate
of breast cancer in Eastern Asian countries occurs in Japan and
South Korea, and among South-Eastern Asian countries it occurs in
Singapore.45 A study on a Lebanese population revealed no asso-
ciation between NAT2 polymorphisms and the risk of breast cancer.
Two NAT slow acetylator genotypes were assessed; however no
rapid NAT acetyaltor genotypes were tested against the risk of
breast cancer. This was the first study conducted on a Lebanese
population to investigate the correlation between dug metabo-
lizing enzymes and the risk of breast cancer.46 Many studies have
linked NAT polymorphisms and the risk of breast cancer with
smoking. In general, females with the slow acetylator type have an
increased risk of developing cancer compared with females with
the rapid acetylator type. A controlled study on Japanese women
reported a correlation between the rapid acetylator genotype and
breast cancer development, however no significant associationwas
observed between the slow NAT acetylator genotype and disease
onset. Smokers with the rapid acetylator phenotype had an
increased risk of breast cancer compared with non-smokers.
Smoking status did not show significant differences between the
risk of breast cancer in females with slow acetylator genotypes.
However, there was only a small amount of data on the slow ace-
tylator genotype included in the study. This, together with other
limitations of the study does not provide strong evidence of the
increased risk of breast cancer associated with NAT phenotype.47

Similarly, a study on Israeli-Arab women showed inconsistent re-
sults of the NAT2 phenotype being associated with an increased
risk of breast cancer in passive smoking females. This study did not
identify the NAT2 polymorphisms for the slow and rapid acetylator
types.48 Several other studies did not reveal any significant corre-
lation between NATs and an increased risk of breast carcinoma.47,49

Overall a meta-analysis on data from several countries,
including South Korea revealed no strong link between NATs and
breast cancer.49 However, Huang et al.50 reported the onset of
breast cancer caused by NAT2 polymorphisms in Taiwan and China.
The NAT2 slow acteylator phenotype was demonstrated to be
associated with an increased risk of breast cancer in post-
menopausal women, specifically women who were not on hor-
monal replacement therapy andwho had lower bodymass indexes.
Interestingly, this association was not associated with womenwith
rapid acetylator phenotypes and pre-menopausal women. The role
of NAT1 methylation in malignant, benign and normal breast
tissues was also investigated in a study conducted in South Korea.
In cancerous breast tissues the NAT1 gene was markedly hypo-
methylated compared with the normal breast tissues and less
mRNA expression was observed. This indicates the role of DNA
hypomethylation in the development of breast cancer tissue.51

2.5. Lung and other cancers

A previous study demonstrated that an increased susceptibility
to lung cancer was associated with the NAT2 acetylator phenotype.
The smoking status of Chinese women in Singapore was correlated
with an increased risk of lung cancer as this is an environmental
source of carcinogenic heterocyclic amines. The NAT2 slow acety-
lator phenotype was found to be associated with an increased risk
of lung cancer in non-smokers, however not in smokers.52 A pre-
vious study in a Japanese population was consistent with these
findings. Non-smokers with the NAT2 slow acetylator phenotype
and light smokers with intermediate NAT2 typewere at greater risk
of disease development.53

An association between NAT and disease development was also
reported in other cancer types. Yu et al.54 assessed the role of NAT in
Hepatitis B associated hepatic cancer in smokers and non-smokers
in Taiwan. The results of the study suggested that NAT2*4 plays a
role in the development of hepatocellular carcinoma in patients
with Hepatitis B. This associationwas positively associated with the
patients smoking status. In non-smokers there was no correlation
between NAT and hepatocellular carcinoma. However, NAT1 alleles
were found to have no association in both smokers and non-
smokers. These results highlight the important role NAT2 plays in
increasing the risk of hepatic cancer induced by tobacco smoke.

Malik et al.55 revealed the impact of NAT2 polymorphisms on
the development of esophageal and gastric cancers in the Kashmir
valley, (India), which are the most prevalent types of carcinoma in
that area. None of the three loci of NAT2 studied were observed to
influence the risk of esophageal or gastric cancer. However, the
combination of haplotype in the NAT2 slow acetylator phenotype
had some modulating effect in both types of cancer.

3. Conclusion

The association between NAT polymorphisms and acteylator
type has been reported in a variety of different types of cancer.
However, only limited studies are available in Asia and the findings
of these studies are inconsistent and inconclusive. The variations in
results may be due to individual differences in the metabolism of
NAT activity against carcinogenic heterocyclic amines. Based on the
published data, the current review does not support any association
between NAT activity and the development of cancer within Asian
populations. However, more studies should be conducted involving
Asian populations to further our understanding of the relationship
between NATs and cancer development, and to learn more
regarding the differences in NAT activity between different ethnic
groups.
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